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ORGANIC BIOELECTRONICS

Drug Delivery

Biosensors for Nanomedicine

Nanoparticles
Enzymes
Liposomes
Pigments

Organic Electrochemical Transistors

 Working in liquids
 Lab-on-a-Chip
 Point-of-care

D. Khodagholy et al. ,(2013) Nature Communications 4, 1575 
doi:10.1038/ncomms2573
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Drug Processes Sensing and Bio-medical applications:

The cotton fibre OECT toward textile integration

Micellation: phase transition directly monitored by OECT

 Liposomes detection (towards  monitoring drug release dynamics) 

Drugs and biomolecules 

Cell stress and death monitoring & Bioelectronics

Memristors, Memristive devices and Systems (Phychip & 
MaDEleNA Projects) based on both inorganics and organics

An OECT based on a living organism showing memristive 
properties.

The perspective of joining Sensing, Memory and…..

Summary
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Ion-to-electron amplified transduction a novel 

key towards bio-sensing and bio-electronics  

 Operation in aqueous bio-environment

 Ideal interface between biology and electronics

 Compatible with photolithographic patterning

 Low-cost fabrication, plastic substrates

 Versatile geometry (gate/channel distance and size not an issue)

 Integration in circuits (microfluidics, lab on a chip…)

 Ideal platform to explore device physics, interfaces in liquids, ion intercalation 

in polymers, double layers, etc.

(M. Berggren group, Adv. Mater. 2007, 19, 3201; G. Malliaras Group , Chem. Rec. 2008, 8, 13–22 
G. Tarabella ….. S. Iannotta .. Chemical Science, Adv. Article 2013)
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Working principle is based on reversible doping/de-
doping of the organic material by electrolyte ions

Ions enter into the organic material: 
volume response

PEDOT:PSS 
poly3,4- ethylenedioxy thiophene doped with 

poly- styrene sulfonate)
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PEDOT:PSS electrochemical transistor  - OECT 

Ion-to-electron amplifying transducer

Vd

-
+ + + + +
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channel
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gate

electrolyte

PEDOT+:PSS- + M+ + e- PEDOT0 + M+:PSS-
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6OECT and Biosensing Application

“ink-jet” fabrication of OECTs.  Device 

dimensions: D-S electrodes 150 mm width 

and 15 mm in length. Separation  between 

G and D-S 100 mm

PEDOT:PSS is ink-jet printed: direct drawing the desired
structure on a glass slide using an automatic syringe and 
a micro-positioning system

based on X, Y, Z servo motors controlled by a 
computer and an automatic micro-syringe providing
a solution flow up to 1 µl/min.

optimal adhesion to the glass slide by controlling
surface properties (wettability and roughness) ,  
drawing speed and flux of polymeric solution

curing treatment at 150°C in oven for 2 hours

Gate  (0.8-1 mm)

Drain Source (150-200 mm)
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8

N. Coppedè …S. Iannotta 

BioMed Research International  

2014 (2014), Article ID 302694

OECT Operating on Micro- or Nano-drops
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E-Textile: OECT Integrated in Single Cotton Fiber

Towards bio-medical monitorring

Working directly with liquid electrolyte

Detection of salt
concentrations
in sweat:
i.e. athelts stress
Cystic fibrosis
etc.

G. Tarabella et al. “A single cotton fiber organic electrochemical transistor for 
liquid electrolyte saline sensing.” J. Mater. Chem. 22, 23830-23834 (2012).
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Adrenaline oxidation Process

Ag 
gate

Pt
gate

Cotton OECT detect Selectively 
Adrenaline 

vs
saline concentration

N. Coppedè,..,S Innotta.. J. Mater. Chem. B, (2014) 2, 5620
Monitor Panic

or Heart Attack
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Monitoring of

Micelle formation

OECT and biosensing application

• personal care 
products, 

• Cosmetics
• pharmaceuticals



R
o

m
a,

 2
2

/0
9

/2
0

1
6Lecithin Liposomes Sensing and Monitoring

Spherical vesicles with a phospholipid bilayer

Hydrophilic

Hydrophobic

Diagnostic imaging of tumors

Study of membranes

Cosmetics

Drug Delivery:
liposomes as drug carriers

Surface often functionalised
to increase liposome stability

Henriksen, 1994
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Lecithin: Chitosan Nanoparticles 
(Liposomes-based Nanoparticles NLC)

Size = 245 nm
Zeta Potential = + 45mV

Chitosan

Sonvico et al. Int. J. Pharm., 324 (2006) 67-73 .
• nanoparticulate system constituted of lecithin vesicles stabilized 

with chitosan (20:1). 

• The presence of chitosan determines the formation of a stable 

structure due to the interaction of negative lipid material with 

the positively charged polysaccharide. 

• the chitosan mucoadhesion properties and its action as a 

penetration enhancer give rise to enhanced encapsulated drug 

bioavailability for poorly water-soluble drugs.
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NLC, 3D-plot

3-Dim Sensing

G. Tarabella, A. G. Balducci, N. Coppedè, S. Marasso, P. D'Angelo, S. Barbieri, M. Cocuzza, P. Colombo, F. 
Sonvico, R. Mosca, and S. Iannotta.
Sensing and Monitoring of Liposomes by Organic Electrochemical Transistors Integrated in Microfluidics 
Biochimica Biophysica Acta 1830, 9, 4374-4380 (2013)
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G. Tarabella ..S. Iannotta., Sensing and Monitoring of Liposomes by Organic Electrochemical Transistors 

Integrated in Microfluidics. Biochimica Biophysica Acta, 1830, 9, 4374-4380 (2013)

Liposomes sensing in Microfluidics
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OECT 
as fast, easy, portable and low cost diagnostic tool for 

monitoring cell stress and death

o Optimization of drug treatments

Apoptosis
o Cell death: Evidence of cell death (apoptosis and/or necrosis)

Necrosis

o Classical methods for cell-death detection:
- agarose gel electrophoresis

- caspase-3 quantification
- Tunel assay 
- morphological charac. on stained or unstained cells

- … 

Require expensive  biological kits, 
lab equipments, scientific expertise.
Results are not immediate

Monitoring drug-induced cell stress and death
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6Experimental setup: biological conditions

•Cell line: A549 (human lung adenocarcinoma) and Human non-

small-cell lung carcinoma (NSCLC) HCC cell line

•Drug: Doxorubicin (anti-cancer DNA-damaging)

•Drug concentration range: 0.01 – 10 µM

•Cultivation in µ-porous Transwell inserts (105 cells/insert)

•growth for 48 hours prior to any electrical measurement

O= 6.5 mm

0.4-µm pore size 

and membrane 

area of 0.33 cm2



R
o

m
a,

 2
2

/0
9

/2
0

1
6Experimental setup: the device

• Cell routinely cultivated at 37 °C, 5% CO2, 
in water saturated air

• Seeding in T-well support and 48 h adhesion

• 72 h exposition to the drug

• OECT measurement

𝑰𝒅𝒔~ 𝜸 · 𝒕

𝜸 = 𝜷
𝑵𝒓𝟒

𝒓𝟎
𝟒 𝑲𝒅

𝑁𝜃

𝒏
𝑪𝟏 = 𝒅𝑰𝒅𝒔 /𝒅𝒕

Fick’s law for a concentration gradient 
applied it to our specific case in the form:

𝑱 =
𝟏

𝑮𝟎
𝑮 ∙ 𝑲𝒅𝜟𝑪

A. Romeo, …. and S.Iannotta
Biosensors and Bioelectronics 68, 791 (2015)
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Doxorubicin Dose-dependence effects
after 72 hours exposure

Live/dead fluorescence assay upon 72h exposure to 

increasing doses of doxorubicin. 

An increasing number of red cells (PI-positive) is observed 

as drug concentration increases.

Device dynamic response (Ids vs. time): 

The number of ions crossing the 

micro-porous membrane is strongly 

increasing as the pores are cleared by 

the cells that die. 

A. Romeo, …. and S.Iannotta,  Biosensors & Bioelectronics  68, 791 (2015)
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6Doxorubicin Dose-dependence: OECT Sensing

versus Fluorescence assay

𝑰𝒅𝒔~ 𝜸 · 𝒕

𝜸 = 𝜷
𝑵𝒓𝟒

𝒓𝟎
𝟒 𝑲𝒅

𝑁𝜃

𝒏
𝑪𝟏 = 𝒅𝑰𝒅𝒔 /𝒅𝒕

versus MTT  viability assay

A. Romeo, …. and S.Iannotta
Biosensors & Bioelectronics
68, 791 (2015)
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Organic Memristive Devices
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COMPUTER BRAIN

PROCESSOR MEMORY PROCESSOR AND MEMORY

NEW ADAPTIVE SYSTEMS WITH LEARNING AND 

DECISION MAKING ABILITIES REQUIRE NEW ELEMENTS



R
o

m
a,

 2
2

/0
9

/2
0

1
6The memristor

•Any element with resistance dependent on current history can be called a ‘memristor’

•Predicted by Chua in 1971 , claimed for the first time in 2008 at HP labs

PANI/PEO based devices V. Erokhin, et al. J. Appl. Phys., 97, 064501 (2005)
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Pt PtTiO2
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6ORGANIC MEMRISTOR - SYNAPSES ANALOG @ IMEM - CNR

 

PANI
S DPEO

G

IG

ID

E.T. Kang, K.G. Neoh, and K.L. Tan, Progr. 
Polymer Sci., 23, 277-324 (1998)
Oxidized polyaniline – conducting
Reduced polyaniline - insulating

V. Erokhin, et al. J. Appl. Phys., 97, 064501 (2005)
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S DPEO
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Mimicking learning-induced 
conductivity modification in 
Lymnea Stagnalis
Hebbian rule

Erokhin V et al. , BioNanoScience, 1, 24 (2011). 

“When an axon of cell A is near enough 

to excite cell B and repeatedly or 

persistently takes part in firing it, some 

growth process or metabolic change 

takes place in one or both cells such 

that A's efficiency, as one of the cells 

firing B, is increased”
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6MODEL ADAPTIVE NETWORK

Out 1 (nA) Out 2 (nA)

Before training 120 32
After training 65 124

Task: reinforcement of the In1-Out2 
connection and inhibition of the In1-
Out1 connection

V. Erokhin, et al., Cryst. Rep., 52, 159-166 (2007)

Training by applying –0.5V between 
1-st input and 1-st output; 
+1.2V between 1-st input and 2-nd 
output
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Simultaneous and sequential training: voltages of opposite 

polarity are applied to red and blue pairs

In

In

Out

Out

2
3

1
4

V. Erokhin et al., J. Mater. Chem., 22, 22881 (2012).
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6SIMULTANEOUS TRAINING

• Conductivity ratio is about 1 order of magnitude

• Possibility of multiple adaptations

• Short-term memory

SEQUENTIAL TRAINING

• Conductivity ratio is more than 2 orders of magnitude

• N0 multiple adaptations

• The system itself tend to return to the state established 

after the first learning

• Long-term memory
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Volt electrodes   «1-3" Volt electrodes   «2-4"

1 day 0 0,5654 mA 0 0,233500 mA

training 1 +0,8 2 hours 5,1492 mA -0,2 2 hours 0,011436 mA

4 hours 7,3604 mA 3 hours 0,009191 mA

control 1 +0,4 0,4120 +0,4 0,008350

0,2353 0,005650

training 2 -0,2 0 2,4344 +0,8 0 0,619300

4 hours 1,6990 4 hours 0,163300

2 day +0,4 2,4250 +0,4 0,147300

control 2

3 day +0,4 5,0578 +0,4 0,144200

control 3

Long-term sequential training results in the formation of stable signal 

pathways with no possibility of next adaptations (baby learning)
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6PERCEPTRON

In the modern sense, the perceptron is an algorithm for learning a binary classifier: a function that maps its 
input x (a real-valued vector) to an output value f(x) (a single binary value):

where w is a vector of real-valued weights, w x is the dot product (which here computes a weighted sum), 
and b is the ’b', a constant term that does not depend on any input value.

Machine learning
• algorithm for supervised classification of an input into 

one of several possible non-binary outputs. 
• linear classifier, i.e. a classification algorithm that 

makes its predictions based on a linear predictor 
function combining a set of weights with the feature 
vector. 

• The algorithm allows for online learning, in that it 
processes elements in the training set one at a time.

• The perceptron algorithm dates back to the late 1950s; 
its first implementation, in custom hardware, was one 
of the first artificial neural networks to be produced.

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Supervised_classification
http://en.wikipedia.org/wiki/Classification_(machine_learning)
http://en.wikipedia.org/wiki/Linear_classifier
http://en.wikipedia.org/wiki/Linear_predictor_function
http://en.wikipedia.org/wiki/Feature_vector
http://en.wikipedia.org/wiki/Online_algorithm
http://en.wikipedia.org/wiki/Artificial_neural_network
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Input images (patterns) as 
the encoded combinations 
of simple signals 
(features)

Output category of input 
image (pattern ecognition)

Memristive Single-layer (without 

associative hidden layers) perceptron

Alibart F. et. al., Nat. Commun. 4, 2072 (2013) Demin V. et. al., Organic 

Electronics 25, 16 (2015)

Simple ‘letter’ pattern recognition NAND and NOR tasks learning

Linearly separable tasks!

Rosenblatt perceptron. S stands for the sensor neurons, A – for associative, and
R – for responsive neurons. Only the second layer of links wij is adaptive. 



R
o

m
a,

 2
2

/0
9

/2
0

1
6

	

LEARNING:

If out(exp)-out(theor) = 0
No training

If out(exp)-out(theor) = -1
Reinforcing

out(exp)-out(theor) = 1
Suppression
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Typical IV curves Typical switching kinetics

Conduction variation 
depends on initial 
conductance and 
approximately corresponds 
to exponential character of 
kinetics

0.0 V  logic “0”
0.4 V  logic “1”
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Learning of the perceptron

Demin et al., Organic Electronics, 25, 16-20 (2015)
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Double-layer perceptron

X1

X20

1

1

X1 X2 Out

0 0 0

0 1 1

1 0 1

1 1 0

XOR task – historical benchmark 

of linearly non-separable task 

XOR truth table XOR graphical representaion
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Double-layer perceptron based on PANI memristors

Circuit diagram for a hardware memristor-based double layer 

perceptron with highlighted logic blocks at the second layer: an access 

system (yellow), memristors (red), differential summator (cyan), 

activation function (green) and the whole “neuron body” (blue)

Logic scheme of the 

commutator used with 5 

logic inputs (L0 – L4) 

and 16 outputs

Logic scheme of the 

implemented neural 

network
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Learning of double-layer perceptron

Back-propagation algorithm 

with batch correction

Weight corrections were recalculated to the 

training pulses durations due to exponential 

approximation of conductivity kinetics





R
o

m
a
, 

2
2

\0
6

\2
0
1
6

Analogue task solving by DLP 

(numerical simulation)

Simulated output signal and 

corresponding separating lines.

Error function value within the 

learning procedure for 3 

different sets of initial weights.

2-3-1 double-layer perceptron based on PANI memristors was 

simulated.
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 Memristive devices are suitable for multilayer hardware perceptron.

For the first time, we built a double-layer perceptron and

demonstrated the possibility of its physical learning to perform

nonseparable combinatorial logic classification (XOR logic task).

 Perceptron is ideally suitable for solving analogue tasks.

 The physical realization of double layer perceptron demonstrates the

ability to form the hardware-based neuromorphic networks with the

use of organic memristive devices. This approach could be extended

(but not directly) to larger ANNs and other machine learning

algorithms for more complex and data-intensive tasks.
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BIO-OECT
INTEGRATING MEMRISTIVE 

RESPONCE?
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Physarum Polychephalum (Slime Molds)
The Greek name means
πολύς κεϕαλή = several heads

Amoebozoa, myxomycetes class, in the past
referred as fungi, today “slime molds” (slime moulds)

Wet environment, about 23ºC - shaded

Shorter patway to catch food, greater nutritional with 
Physarum Polycephalum

That are awesome features for a organism that spends 
most of its life as a single cell, feeding on bacteria.

Famine: Amoebe unite to move better 
in the richest areas and as they reproduce 
creating spores.

Several Nuclei dispersed in the cytoplasm
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Physarum Polycephalum
a Unicellular Organism Operated 

as an OECT
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Physarum Polycephalum
a Unicellular Organism Operated 

as an OECT
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G. Tarabella… S. Iannotta,
An Hybrid Biological/Organic Electronic Device Endowed with Sensing and
Memristive Properties Based on the Physarum Polycephalum Cell.
Chem. Sci., 2015, 6, 2859.

X
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6Electrochemical transistors: 

take-home messages

Organic electrochemical transistors made of PEDOT:PSS are 
ideally suitable for real time sensing and monitoring a variety of  
systems of interest for Monitoring Drug Processes: surfactant 
transition phase, micelles, liposomes or nanoparticles;

 Their application in Nanomedicine and Bioelectronics is 
envisaged as very promising- Being able to monitor in real time 
cellular stress and death

49

 They develop adaptive behavior when interfaced 
“electrically/ionically” with leaving systems

 They appear to be ideally suitable to interface natural brains
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OUTLOOK – the perspective I am proposing 

We are working towards developing a new paradigm towards 
integrating sensing, memory and logic in a novel approach to 

hybrid bio-electronics:

Sensing and bioelectronics interfaces given by the OECT 
approach 

Memristive logic where learning is inherent in the materials 
response (memory and logic in the same device)

50

Hybrid natural–synthetic bio-hybrid and bio- inspired 
systems for novel logic, learning and smart prosthetics 
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